Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.

Identifieur interne : 000C55 ( Main/Exploration ); précédent : 000C54; suivant : 000C56

Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.

Auteurs : Yahu Hu [République populaire de Chine] ; Yu Huang [République populaire de Chine] ; Jieqiong Su [République populaire de Chine] ; Zhuo Gao [République populaire de Chine] ; Shuqi Li [République populaire de Chine] ; Zhongren Nan [République populaire de Chine]

Source :

RBID : pubmed:29890575

Descripteurs français

English descriptors

Abstract

Metal bioavailability and extracellular enzyme activity are two important indicators of soil quality in metal-contaminated soil. However, it is unclear how the chronosequence effect modifies these two factors in highly contaminated calcareous soils undergoing afforestation. We used Populus simonii Carr. and the calciphilous Ulmus macrocarpa Hance as contrasting tree species to study the chronosequence effect. We found that afforestation significantly increased soil total nitrogen (N) content as well as soil carbon (C)/phosphorus (P) and N/P ratios, but decreased soil total P content and soil C/N ratio, regardless of the tree species and stand age, suggesting strong P limitation. However, available P did not change significantly with stand age. In both tree species, P mobilization depleted soil organic matter through the priming effect of dissolved organic carbon, whereas the decrease in soil pH in the U. macrocarpa stands enhanced CaCO3 dissolution, collectively reducing the capacity of the soil to immobilize metals, resulting in increased metal bioavailability with stand age. The activity of oxidase (dehydrogenase) was positively correlated with bioavailable zinc concentration, soil electrical conductivity, and soil total N content. Hydrolase activities (alkaline phosphatase, β-glucosidase, and urease) were significantly positively correlated with the ratios of soil C/N and C/P, soil pH, and CaCO3, but negatively correlated with soil N/P ratio and bioavailable cadmium concentration. Increasing stand age was associated with the gradual recovery of oxidase activity and remarkable inhibition of hydrolase activity. Our results suggest that the combination of soil hydrolase activity and metal bioavailability can predict soil quality in the afforestation of highly contaminated soils.

DOI: 10.1016/j.scitotenv.2017.12.027
PubMed: 29890575


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.</title>
<author>
<name sortKey="Hu, Yahu" sort="Hu, Yahu" uniqKey="Hu Y" first="Yahu" last="Hu">Yahu Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address: huyh@lzu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yu" sort="Huang, Yu" uniqKey="Huang Y" first="Yu" last="Huang">Yu Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Su, Jieqiong" sort="Su, Jieqiong" uniqKey="Su J" first="Jieqiong" last="Su">Jieqiong Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Zhuo" sort="Gao, Zhuo" uniqKey="Gao Z" first="Zhuo" last="Gao">Zhuo Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Shuqi" sort="Li, Shuqi" uniqKey="Li S" first="Shuqi" last="Li">Shuqi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nan, Zhongren" sort="Nan, Zhongren" uniqKey="Nan Z" first="Zhongren" last="Nan">Zhongren Nan</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29890575</idno>
<idno type="pmid">29890575</idno>
<idno type="doi">10.1016/j.scitotenv.2017.12.027</idno>
<idno type="wicri:Area/Main/Corpus">000D95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D95</idno>
<idno type="wicri:Area/Main/Curation">000D95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D95</idno>
<idno type="wicri:Area/Main/Exploration">000D95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.</title>
<author>
<name sortKey="Hu, Yahu" sort="Hu, Yahu" uniqKey="Hu Y" first="Yahu" last="Hu">Yahu Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address: huyh@lzu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yu" sort="Huang, Yu" uniqKey="Huang Y" first="Yu" last="Huang">Yu Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Su, Jieqiong" sort="Su, Jieqiong" uniqKey="Su J" first="Jieqiong" last="Su">Jieqiong Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Zhuo" sort="Gao, Zhuo" uniqKey="Gao Z" first="Zhuo" last="Gao">Zhuo Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Shuqi" sort="Li, Shuqi" uniqKey="Li S" first="Shuqi" last="Li">Shuqi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nan, Zhongren" sort="Nan, Zhongren" uniqKey="Nan Z" first="Zhongren" last="Nan">Zhongren Nan</name>
<affiliation wicri:level="1">
<nlm:affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000</wicri:regionArea>
<wicri:noRegion>Lanzhou 730000</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="eISSN">1879-1026</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Environmental Monitoring (methods)</term>
<term>Environmental Restoration and Remediation (MeSH)</term>
<term>Enzymes (analysis)</term>
<term>Metals (analysis)</term>
<term>Nitrogen (analysis)</term>
<term>Phosphorus (analysis)</term>
<term>Soil (chemistry)</term>
<term>Soil Pollutants (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Assainissement et restauration de l'environnement (MeSH)</term>
<term>Azote (analyse)</term>
<term>Enzymes (analyse)</term>
<term>Métaux (analyse)</term>
<term>Phosphore (analyse)</term>
<term>Polluants du sol (analyse)</term>
<term>Sol (composition chimique)</term>
<term>Surveillance de l'environnement (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Enzymes</term>
<term>Metals</term>
<term>Nitrogen</term>
<term>Phosphorus</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Azote</term>
<term>Enzymes</term>
<term>Métaux</term>
<term>Phosphore</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Environmental Monitoring</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de l'environnement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environmental Restoration and Remediation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Assainissement et restauration de l'environnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metal bioavailability and extracellular enzyme activity are two important indicators of soil quality in metal-contaminated soil. However, it is unclear how the chronosequence effect modifies these two factors in highly contaminated calcareous soils undergoing afforestation. We used Populus simonii Carr. and the calciphilous Ulmus macrocarpa Hance as contrasting tree species to study the chronosequence effect. We found that afforestation significantly increased soil total nitrogen (N) content as well as soil carbon (C)/phosphorus (P) and N/P ratios, but decreased soil total P content and soil C/N ratio, regardless of the tree species and stand age, suggesting strong P limitation. However, available P did not change significantly with stand age. In both tree species, P mobilization depleted soil organic matter through the priming effect of dissolved organic carbon, whereas the decrease in soil pH in the U. macrocarpa stands enhanced CaCO
<sub>3</sub>
dissolution, collectively reducing the capacity of the soil to immobilize metals, resulting in increased metal bioavailability with stand age. The activity of oxidase (dehydrogenase) was positively correlated with bioavailable zinc concentration, soil electrical conductivity, and soil total N content. Hydrolase activities (alkaline phosphatase, β-glucosidase, and urease) were significantly positively correlated with the ratios of soil C/N and C/P, soil pH, and CaCO
<sub>3</sub>
, but negatively correlated with soil N/P ratio and bioavailable cadmium concentration. Increasing stand age was associated with the gradual recovery of oxidase activity and remarkable inhibition of hydrolase activity. Our results suggest that the combination of soil hydrolase activity and metal bioavailability can predict soil quality in the afforestation of highly contaminated soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29890575</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>06</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1026</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>622-623</Volume>
<PubDate>
<Year>2018</Year>
<Month>May</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.</ArticleTitle>
<Pagination>
<MedlinePgn>1056-1066</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0048-9697(17)33446-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.scitotenv.2017.12.027</ELocationID>
<Abstract>
<AbstractText>Metal bioavailability and extracellular enzyme activity are two important indicators of soil quality in metal-contaminated soil. However, it is unclear how the chronosequence effect modifies these two factors in highly contaminated calcareous soils undergoing afforestation. We used Populus simonii Carr. and the calciphilous Ulmus macrocarpa Hance as contrasting tree species to study the chronosequence effect. We found that afforestation significantly increased soil total nitrogen (N) content as well as soil carbon (C)/phosphorus (P) and N/P ratios, but decreased soil total P content and soil C/N ratio, regardless of the tree species and stand age, suggesting strong P limitation. However, available P did not change significantly with stand age. In both tree species, P mobilization depleted soil organic matter through the priming effect of dissolved organic carbon, whereas the decrease in soil pH in the U. macrocarpa stands enhanced CaCO
<sub>3</sub>
dissolution, collectively reducing the capacity of the soil to immobilize metals, resulting in increased metal bioavailability with stand age. The activity of oxidase (dehydrogenase) was positively correlated with bioavailable zinc concentration, soil electrical conductivity, and soil total N content. Hydrolase activities (alkaline phosphatase, β-glucosidase, and urease) were significantly positively correlated with the ratios of soil C/N and C/P, soil pH, and CaCO
<sub>3</sub>
, but negatively correlated with soil N/P ratio and bioavailable cadmium concentration. Increasing stand age was associated with the gradual recovery of oxidase activity and remarkable inhibition of hydrolase activity. Our results suggest that the combination of soil hydrolase activity and metal bioavailability can predict soil quality in the afforestation of highly contaminated soils.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yahu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address: huyh@lzu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Jieqiong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Zhuo</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shuqi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nan</LastName>
<ForeName>Zhongren</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008670">Metals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052918" MajorTopicYN="N">Environmental Restoration and Remediation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008670" MajorTopicYN="N">Metals</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ecological stoichiometry</Keyword>
<Keyword MajorTopicYN="N">Extracellular enzyme activity</Keyword>
<Keyword MajorTopicYN="N">Phytoremediation</Keyword>
<Keyword MajorTopicYN="N">Poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29890575</ArticleId>
<ArticleId IdType="pii">S0048-9697(17)33446-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2017.12.027</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hu, Yahu" sort="Hu, Yahu" uniqKey="Hu Y" first="Yahu" last="Hu">Yahu Hu</name>
</noRegion>
<name sortKey="Gao, Zhuo" sort="Gao, Zhuo" uniqKey="Gao Z" first="Zhuo" last="Gao">Zhuo Gao</name>
<name sortKey="Huang, Yu" sort="Huang, Yu" uniqKey="Huang Y" first="Yu" last="Huang">Yu Huang</name>
<name sortKey="Li, Shuqi" sort="Li, Shuqi" uniqKey="Li S" first="Shuqi" last="Li">Shuqi Li</name>
<name sortKey="Nan, Zhongren" sort="Nan, Zhongren" uniqKey="Nan Z" first="Zhongren" last="Nan">Zhongren Nan</name>
<name sortKey="Su, Jieqiong" sort="Su, Jieqiong" uniqKey="Su J" first="Jieqiong" last="Su">Jieqiong Su</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29890575
   |texte=   Temporal changes of metal bioavailability and extracellular enzyme activities in relation to afforestation of highly contaminated calcareous soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29890575" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020